
EWD.js

Rob Tweed
M/Gateway Developments Ltd

Twitter: @rtweed
Email: rtweed@mgateway.com

Friday, 29 November 13

mailto:rtweed@mgateway.com
mailto:rtweed@mgateway.com

EWD.js

• Background, History and Aims
• Underlying Technology & Architecture

– Comparison with “classic” EWD
– Benefits

• How do you use it?
– Examples

2

Friday, 29 November 13

The backdrop

• How to make Mumps acceptable to the
“mainstream”?

• How to recruit and retain new developers
with the expertise to:
– exploit the new and expanding possibilities of

browsers as the modern, ubiquitous UI platform
– make VistA the healthcare Big Data visualisation

platform of choice
– make Healthcare IT as exciting and cool as the

gaming and social media industries?

Friday, 29 November 13

http://robtweed.wordpress.com

Friday, 29 November 13

Mumps: a Dead End?
• Not seen as a sensible career move by most of

the new generation of developers
– Unlikely to want a Mumps development job
– Unlikely to be retained very long

• Dwindling pool of Mumps skills, despite training
efforts

• Significant brake on VistA uptake:
– Seen as a risk by potential adopters:

• Old, obsolete technology
• Shortage of developers

Friday, 29 November 13

Understanding the bigger picture

• Google Alerts
• Twitter searches & dialogue
• Feedback on articles and comments
• Feedback from other communities

• Understanding the issues from the point of
view of those looking at Mumps from the
mainstream

Friday, 29 November 13

For example

Friday, 29 November 13

For example

Friday, 29 November 13

VistA: Why it’s like it is

• When first written, Mumps had many
constraints:
– 8 character variable name
– 8 character global names
– 8 character routine names
– 8 character labels
– No variable scoping
– No functions
– Everything upper case

Friday, 29 November 13

VistA: Why it’s like it is

• Hardware limitations at the time:
– Very expensive
– Very low-powered hardware
– Very little memory
– Developer time relatively less costly

• Code written to:
– minimise resource usage
– Maximise performance
– At the expense of maintainability

Friday, 29 November 13

Write code that doesn’t suck?

• Modern Mumps coding has none of the
original limitations

• Well-written modern Mumps code can be
highly readable, understandable and
maintainable

Friday, 29 November 13

But:
• VistA coding standards: SAC Compliance

– Retains most of the coding limitations unnecessarily
• Original VistA Mumps code depended on leaky,

globally-scoped variables
– Very difficult to build new, properly-scoped code to

work with leaky legacy code
– Huge task to rewrite properly

Friday, 29 November 13

The poisonous conflation

• Mumps is positioned as a language
• It’s also a database
• Mention Mumps to the mainstream and

they focus on the language, not the
database

• Google search for Mumps language and
what do you find almost immediately?

Friday, 29 November 13

The Poison

Friday, 29 November 13

Back comes the poison

Friday, 29 November 13

The reason for the poison?

• Written by guys who have had to maintain
the leaky code in Mumps applications
such as Epic and VistA

• They believe (and perpetuate the belief)
that it’s how you have to code in the
Mumps language
– nobody told them why that code was the way

it was, and that it didn’t need to be that way
– now all modern developers believe it too!

Friday, 29 November 13

Then we have the Misconceptions

Friday, 29 November 13

More misconceptions

Friday, 29 November 13

Reason
• Epic

– I don’t know if criticisms of Epic’s interoperability are
founded or not, but if they are, it’s a commercial
decision by Epic, not a technical limitation of Mumps

– However, this is naively being translated into a
poisonous “truth” that Mumps has significant technical
limitations

• Now being turned into a broader “truth”:
– Mumps’ dominance in the sector is the root of all ills in

Healthcare IT
• ie it’s old, out-of-dated technology that is

fundamentally flawed and needs replacing

Friday, 29 November 13

20

Friday, 29 November 13

Step 1: remove the conflation

• Focus on Mumps, the database
– the Mumps language is pilloried by the

mainstream, for founded and unfounded
reasons

• attempting to change that opinion is futile
– By Mumps being considered a language, the

Mumps database is dismissed by the
mainstream

– It’s the database that is the unique and
powerful part of the technology

Friday, 29 November 13

Mumps: Universal NoSQL

Friday, 29 November 13

Step 2: Replace the language

• A language that has similar good parts to
Mumps

• Object oriented, but dynamic objects
• High performance and scalability
• Highly popular language that is likely to

stay that way
• Similar intimate integration with the

Mumps database

Friday, 29 November 13

JavaScript: ticks all the boxes

• A language that has similar good parts to
Mumps

• Object oriented, but dynamic objects
• High performance and scalability
• Highly popular language

– Games, 3-d, social media industries
– It’s not going to disappear
– It’s the language new developers are learning

Friday, 29 November 13

JavaScript runs in the browser, right?

• Yes, but now also on the server:
– Node.js

25

Friday, 29 November 13

Node.js
• Server-side implementation of Javascript
• Started as an open-source project by Ryan Dhal
• Uses Google’s V8 Javascript engine
• Designed for network programming

– Event-driven
– Normally asynchronous I/O

• Very high performance and scalability
• Runs on Linux, Windows & Mac OS X
• Recently officially approved for use by the VA

Friday, 29 November 13

Node.js

• Many open-source modules, in particular:
– built-in Web server
– Socket.io: web-sockets

Friday, 29 November 13

InterSystems Node.js Interface
• Initially introduced for their free Globals

database
– Used their very low-level interface into the core global

database engine
– Written by Chris Munt (M/Gateway Developments)
– Very high performance

• Ported to Caché (2012.2)
– Official standard interface
– function() API added to invoke Mumps functions from

Javascript

Friday, 29 November 13

Equivalent for GT.M?

• David Wicksell: NodeM
– https://github.com/dlwicksell/nodem

– API-compatible reverse-engineer of
InterSystems’ Node.js interface

• Behaves identically

Friday, 29 November 13

Node.js Interface

Friday, 29 November 13

Mumps, the JSON Database

• Important to present a Mumps database
as something natural to a JavaScript
developer

• JSON is their lingua-franca
• Abstract Mumps Global storage into

persistent JavaScript Objects
– similar level of “intimacy” as between the

Mumps language and database

31

Friday, 29 November 13

Dynamic OO Global Abstraction

• Underlying concept: any object and its
properties can be easily modelled as a
corresponding Mumps Global node, eg:

– patient.address.town
– patient.address.zip
– patient.name

– ^patient(id,”address”,”town”)=“New York”
– ^patient(id,”address”,”zip”)=123456
– ^patient(id,”name”)=“John Smith”

Friday, 29 November 13

Document Storage

• Physical Global Nodes projected as
GlobalNode objects in JavaScript

• GlobalNode objects have two key methods:
– _setDocument()

• Maps a JSON document into an equivalent global as
a sub-tree

– _getDocument()
• Maps a GlobalNode’s sub-tree into a JSON object

Friday, 29 November 13

 var gridData = [
 {col1: 1, col2: 1, name: ‘rec1’},
 {col1: 4, col2: 4, name: ‘rec4’}
];
 session.$('newGridData')._setDocument(gridData);

JavaScript Document Storage

Friday, 29 November 13

JavaScript Document Storage

^%zewdSession("session",4020,"newGridData",0,"col1")=1
^%zewdSession("session",4020,"newGridData",0,"col2")=1
^%zewdSession("session",4020,"newGridData",0,"name")="rec1"
^%zewdSession("session",4020,"newGridData",1,"col1")=4
^%zewdSession("session",4020,"newGridData",1,"col2")=4
^%zewdSession("session",4020,"newGridData",1,"name")="rec4"

 var gridData = [
 {col1: 1, col2: 1, name: ‘rec1’},
 {col1: 4, col2: 4, name: ‘rec4’}
];
 session.$('newGridData')._setDocument(gridData);

Friday, 29 November 13

JavaScript Document Storage
^%zewdSession("session",4020,"newGridData",0,"col1")=1
^%zewdSession("session",4020,"newGridData",0,"col2")=1
^%zewdSession("session",4020,"newGridData",0,"name")="rec1"
^%zewdSession("session",4020,"newGridData",1,"col1")=4
^%zewdSession("session",4020,"newGridData",1,"col2")=4
^%zewdSession("session",4020,"newGridData",1,"name")="rec4"

var gridData = session.newGridData._getDocument(gridData);

[
 {col1: 1, col2: 1, name: ‘rec1’},
 {col1: 4, col2: 4, name: ‘rec4’}
];

Friday, 29 November 13

The key ingredients

• Mumps as one of the most powerful and
proven NoSQL databases available:
– high scalability, high performance

• Projected as a JSON database
• Accessible via JavaScript

– using Node.js to provide server-side
environment

– using native interface for Cache
– or equivalent interface for GT.M

37

Friday, 29 November 13

One more key piece of magic

• WebSockets
– HTML5 standard
– bi-directional, event-driven socket connection

• between browser & back-end
– JSON messaging between browser and back-

end
– generally being found to be faster than HTTP/

Ajax
– No polling!

38

Friday, 29 November 13

Package it all up

• EWD.js
– framework for JavaScript applications
– 100% JavaScript & JSON
– WebSockets to deliver JSON between

browser and Node.js back-end
– Mumps databases abstracted to appear to be

JSON stores
– fully event-driven
– client/server in the browser

39

Friday, 29 November 13

EWD.js Architecture

40

Friday, 29 November 13

EWD.js Architecture

41

Note: WebSockets connect browsers
to Node.js Master Process, not to
Caché or GT.M

Friday, 29 November 13

EWD.js Development

42

100%
JavaScript

Friday, 29 November 13

EWD.js Messaging

43

Event
Occurs

Friday, 29 November 13

EWD.js Messaging

44

JSON
Message
Created

Friday, 29 November 13

EWD.js Messaging

45

Message
Sent

Friday, 29 November 13

EWD.js Messaging

46

Message
Received

at
back-end

Friday, 29 November 13

EWD.js Messaging

47

Message
Handler

fired

Friday, 29 November 13

EWD.js Messaging

48

_setDocument()

Friday, 29 November 13

EWD.js Messaging

49

_getDocument()

Friday, 29 November 13

EWD.js Messaging

50

Message
sent
by

back-end

Friday, 29 November 13

EWD.js Messaging

51

Message
Received

by
browser

Friday, 29 November 13

EWD.js Messaging

52

JSON
Message

Event
Handler

Fires

Friday, 29 November 13

EWD.js Messaging

53

Modify
UI

Friday, 29 November 13

Send message from browser

54

 EWD.sockets.sendMessage({
 type: "sendHelloWorld",
 params: {
 text: 'Hello World!',
 sender: 'Rob',
 date: new Date().toUTCString()
 }
 });

Friday, 29 November 13

Send message from browser

55

 EWD.sockets.sendMessage({
 type: "sendHelloWorld",
 params: {
 text: 'Hello World!',
 sender: 'Rob',
 date: new Date().toUTCString()
 }
 });

User-defined type
Friday, 29 November 13

Send message from browser

56

 EWD.sockets.sendMessage({
 type: "sendHelloWorld",
 params: {
 text: 'Hello World!',
 sender: 'Rob',
 date: new Date().toUTCString()
 }
 });

JSON payload
Friday, 29 November 13

Back-end Module

57

module.exports = {
 onSocketMessage: function(ewd) {
 var wsMsg = ewd.webSocketMessage;
 var type = wsMsg.type;
 var params = wsMsg.params;
 var sessid = ewd.session.$('ewd_sessid')._value;
 }
};

Friday, 29 November 13

Back-end Module

58

module.exports = {
 onSocketMessage: function(ewd) {
 var wsMsg = ewd.webSocketMessage;
 var type = wsMsg.type;
 var params = wsMsg.params;
 var sessid = ewd.session.$('ewd_sessid')._value;
 }
};

Message Handler: fires whenever
a message is received

Friday, 29 November 13

Back-end Module

59

module.exports = {
 onSocketMessage: function(ewd) {
 var wsMsg = ewd.webSocketMessage;
 var type = wsMsg.type;
 var payload = wsMsg.params;
 var sessid = ewd.session.$('ewd_sessid')._value;
 if (type === 'sendHelloWorld') {
 // do whatever is required with payload
 return {received: true};
 }
 }
}; Handle the message we

sent from browser

Friday, 29 November 13

Back-end Module

60

module.exports = {
 onSocketMessage: function(ewd) {
 var wsMsg = ewd.webSocketMessage;
 var type = wsMsg.type;
 if (type === 'sendHelloWorld') {
 var savedMsg = new ewd.mumps.GlobalNode('myMessage', []);
 savedMsg._setDocument(wsMsg);
 return {savedInto: ‘^myMessage'};
 }
 }
};

Saves the entire message
into ^myMessage

Friday, 29 November 13

Back-end Module

61

module.exports = {
 onSocketMessage: function(ewd) {
 var wsMsg = ewd.webSocketMessage;
 var type = wsMsg.type;
 if (type === 'sendHelloWorld') {
 var savedMsg = new ewd.mumps.GlobalNode('myMessage', []);
 savedMsg._setDocument(wsMsg);
 return {savedInto: ‘^myMessage'};
 }
 }
};

Returns a sendHelloWorld
message back to browser

Friday, 29 November 13

Browser-side Handler

62

 EWD.onSocketMessage = function(messageObj) {
 if (messageObj.type === 'sendHelloWorld') {
 var text = 'Your message was successfully saved into ' +
 messageObj.message.savedInto;
 document.getElementById('response').innerHTML = text;
 setTimeout(function() {
 document.getElementById('response').innerHTML = '';
 },2000);
 }
 };

Built-in Event Handler function

Friday, 29 November 13

Browser-side Handler

63

 EWD.onSocketMessage = function(messageObj) {
 if (messageObj.type === 'sendHelloWorld') {
 var text = 'Your message was successfully saved into ' +
 messageObj.message.savedInto;
 document.getElementById('response').innerHTML = text;
 setTimeout(function() {
 document.getElementById('response').innerHTML = '';
 },2000);
 }
 };

Just like at the back-end!

Friday, 29 November 13

Browser-side Handler

64

 EWD.onSocketMessage = function(messageObj) {
 if (messageObj.type === 'sendHelloWorld') {
 var text = 'Your message was successfully saved into ' +
 messageObj.message.savedInto;
 document.getElementById('response').innerHTML = text;
 setTimeout(function() {
 document.getElementById('response').innerHTML = '';
 },2000);
 }
 };

Modify the UI

Friday, 29 November 13

No Polling!

• With WebSockets, the back-end can send
a message at any time to:
– a specific browser
– all browsers running a specific EWD.js

application
– all currently-connected browsers

65

Friday, 29 November 13

Back-end sending a message

66

 var savedMsg = new ewd.mumps.GlobalNode('myMessage', []);

 ewd.sendWebSocketMsg({
 type: 'savedMessage',
 message: savedMsg._getDocument()
 });

Friday, 29 November 13

Invoking Mumps code

• Can invoke functions from within the back-
end JavaScript module:

67

var result = ewd.mumps.function('getPatientVitals^MyEHR',
 params.patientId,
 params.date);

Friday, 29 November 13

Invoking Mumps code

• Can invoke functions from within the back-
end JavaScript module:

68

var result = ewd.mumps.function('getPatientVitals^MyEHR',
 params.patientId,
 params.date);

This is the equivalent of the Mumps code:

 set result=$$getPatientVitals^MyEHR(patientId,date)

Friday, 29 November 13

Invoking Mumps code

• Can invoke functions from within the back-
end JavaScript module:

69

var result = ewd.mumps.function('getPatientVitals^MyEHR',
 params.patientId,
 params.date);

This is the equivalent of the Mumps code:

 set result=$$getPatientVitals^MyEHR(patientId,date)

Then use _getDocument() to retrieve Vitals from Global to
corresponding JSON

Friday, 29 November 13

Built-in secured Web Services

• Any back-end JavaScript method can be
exposed as a JSON Web Service

• Access is automatically secured
– HMAC-SHA256 digital signatures required for

every HTTP request
– The same security used by Amazon Web

Services
• Lightweight peer-to-peer access between

EWD.js systems
70

Friday, 29 November 13

Example Web Service

71

 webServiceExample: function(ewd) {
 var patient = new ewd.mumps.GlobalNode('CLPPats', [ewd.query.id]);
 if (!patient._exists) return {error: 'Patient ' + ewd.query.id + ' does not exist'};
 return patient._getDocument();
 }

https://192.168.1.89:8080/json/demo/webServiceExample?
 id=1233&
 accessId=rob12kjh1i23&
 timestamp=Wed, 19 Jun 2013 14:14:35 GMT&
 signature=P0bIakNehj2TkuadxbKRsIgJCGIhY1EvntJdSce5XvQ=

Node.js EWD.js Web Service client:
npm install ewdliteclient

Friday, 29 November 13

Example Web Service

72

 webServiceExample: function(ewd) {
 var patient = new ewd.mumps.GlobalNode('CLPPats', [ewd.query.id]);
 if (!patient._exists) return {error: 'Patient ' + ewd.query.id + ' does not exist'};
 return patient._getDocument();
 }

https://192.168.1.89:8080/json/demo/webServiceExample?
 id=1233&
 accessId=rob12kjh1i23&
 timestamp=Wed, 19 Jun 2013 14:14:35 GMT&
 signature=P0bIakNehj2TkuadxbKRsIgJCGIhY1EvntJdSce5XvQ=

Node.js EWD.js Web Service client:
npm install ewdliteclient

The perfect architecture to
support VSA

Friday, 29 November 13

Secured Linked Systems

73

Friday, 29 November 13

Node.js Custom Events

74

addMedication({params})

Friday, 29 November 13

Node.js Custom Events

75

addMedication({params})

addMedication = function(params) {
... code for adding medication

ewd.emit(‘audit’, {auditParams};
ewd.emit(‘stockControl’, {stockParams});
};

Friday, 29 November 13

Node.js Custom Events

76

addMedication({params})

addMedication = function(params) {
... code for adding medication

ewd.emit(‘audit’, {auditParams};
ewd.emit(‘stockControl’, {stockParams});
};

ewd.on(‘audit’, function(params) {
 code for adding audit record

 possibly via WebService to remote
 system
};

Friday, 29 November 13

Node.js Custom Events

77

addMedication({params})

addMedication = function(params) {
... code for adding medication

ewd.emit(‘audit’, {auditParams};
ewd.emit(‘stockControl’, {stockParams});
};

ewd.on(‘audit’, function(params) {
 code for adding audit record
};

ewd.on(‘stockControl’, function(params {
 code for changing stock record
};

Friday, 29 November 13

EWD.js v “classic” EWD
• 100% JavaScript

– no direct use of Mumps code
– no Mumps routines to install and configure
– works with InterSystems’ GlobalsDB

• Static pages of HTML and JavaScript
– not an “server pages” technology
– no compilation stage

• Not a tag-based development environment
• Works with any and all JavaScript frameworks,

or hand-crafted HTML
• No HTTP / Ajax

78

Friday, 29 November 13

EWD.js requirements

• Ideally browsers that support HTML5
WebSockets
– however, EWD.js uses Node.js socket.io

library
• emulates websockets using other techniques if not

available
• even works with old versions of Internet Explorer!

79

Friday, 29 November 13

Licensing & Availability

• Apache 2

• https://github.com/robtweed/ewdGateway2

• Installing on Node.js:
– npm install ewdgateway2

80

Friday, 29 November 13

Getting Started
• http://gradvs1.mgateway.com/download/EWDjs.pdf
• dEWDrop VM (http://www.fourthwatchsoftware.com)
• Mike Clayton’s Ubuntu Installer

– Node.js
– EWD.js
– GlobalsDB

• Raspberry Pi!
• Training Course:

– WorldVistA meeting, Sacramento: Jan 2014
– UK?

81

Friday, 29 November 13

http://gradvs1.mgateway.com/download/EWDjs.pdf
http://gradvs1.mgateway.com/download/EWDjs.pdf
http://www.fourthwatchsoftware.com
http://www.fourthwatchsoftware.com

EWD.js

Rob Tweed
M/Gateway Developments Ltd

Twitter: @rtweed
Email: rtweed@mgateway.com

Friday, 29 November 13

mailto:rtweed@mgateway.com
mailto:rtweed@mgateway.com

