—

S ——

NTE L _ <O P ENT T =

EWD.js

Rob Tweed
M/Gateway Developments Ltd

Twitter: @rtweed
Email: rtweed@mgateway.com

Friday, 29 November 13

mailto:rtweed@mgateway.com
mailto:rtweed@mgateway.com

EWD.js

« Background, History and Aims

* Underlying Technology & Architecture
— Comparison with “classic” EWD
— Benefits

 How do you use it?
— Examples

e 2

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

The backdrop

 How to make Mumps acceptable to the
“mainstream”?

* How to recruit and retain new developers
with the expertise to:

— exploit the new and expanding possibilities of
browsers as the modern, ubiquitous Ul platform

— make VistA the healthcare Big Data visualisation
platform of choice

— make Healthcare IT as exciting and cool as the
gaming and social media industries?

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

http://robtweed.wordpress.com

THE EWD FILES ABOUT

Enterprise Web Development: Javascript, NoSQL and Big Data

CAN A PHOENIX ARISE FROM THE ASHES
OF MUMPS?

e EWD Course: 17-19 May, Fairfax VA

There's amajor problem thatis growing increasingly critical in the Mumps application world: Mumps: the proto-database (or how

where are the new generation r developers going to come from to supp':-rt whatis apretty to build your own NoSQL database)
massive legacy of applications? The US Deptof Veterans' Affairs' (VA) V15?4 Electronic

. ‘i o o ‘g e InterSystems Global Summit:
Healthcare Record (EHR)is justone of alarge numberof healthcare applications thatwas ErRyeiE -
written in Mumps andis supported and maintained by a dwindling number of developers Come and See the Show!
who understand and/or enjoy using Mumps. The sheer scale of VistA andits growing e The Uncertainty Principle

popularity as an Open Source EHR outside the VA means severe problems aheadif away of N) o .
Writing EWD Applications entirelv

M/ GATEWAY

NTE L _ <o P -l ENaT T =

Friday, 29 November 13

Mumps: a Dead End?

* Not seen as a sensible career move by most of
the new generation of developers

— Unlikely to want a Mumps development job
— Unlikely to be retained very long

* Dwindling pool of Mumps skills, despite training
efforts

 Significant brake on VistA uptake:

— Seen as a risk by potential adopters:
» Old, obsolete technology
« Shortage of developers

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Understanding the bigger picture

* Google Alerts

» Twitter searches & dialogue
 Feedback on articles and comments
 Feedback from other communities

* Understanding the issues from the point of
view of those looking at Mumps from the
mainstream

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

For example

: teemuvesala
- '-‘ worse than
RN github.com/OSEHRA/VistA-M...

—

NTE L _ <o P -l ENaT T =

Friday, 29 November 13

For example

file | 82lines (81 sloc) | 5.392kh Edit Raw Blame History

00PSPC4l ;HIRMFOFfYH-EMPLOYEE DATA, CAZ FORM ;6Ff14f9%8
; ;2. 0;ASISTS,;;Jun 03, Z0O0Z
;EMPLOYEE DATA
;EMPLOYEE'S DATA ti

S O0PSDATA=$#P{($G{~00PS{ZZ60,IEN,O)) """, 2}
wo!,"PUO.S,Z5.5;LEB"_OOPSDATA "@;" ;NAME
S OOPSDATA=$G{"~00PS{ZZ60,IEN,"Z16ZA"))
s 00PSP=$P(DUPSDATA,“A") I QOPSP'(["-" S OOPSP=$E(OQOPSP,1,3)_"-"_¢$E(OOPSP,4,5) "-"_$E(0OOPSP,6,13)
w "PUlS. S, 25 5;LB"_00PSP_"@;" ;58N
s 00PSP-$P(DDPSDATA,"A",Z) I OOPSP'="" D WDATE~OOPSPUT1(OOPSP, "3.1,24.8" .9,24.8","4.8,24. '") ;DATE OF BIRTH
S 00PSP=¢$P(00PSDATA, """ ,3) W ! "PUs.5,24_ 7;LB"_$S(00PSP=1:"Male" 00PEP=2Z '"Female" HLZM MY _"@;" SBEX
N PHN
s PHN=$TR($P(OOPSDATA,““",BJ,"I—*ﬁ","")
W', "PUS.7,24.7;LB"_$E(PHN,1,3)_ "-"_ $E(PHN,4,6) "-" $E{(PHN,7,610)_"@;"
W tPUle. 6,24 7;LB"_$S($P(00PSDATA "~", 17)'=""‘+$P(00PSDATA,"“",12),l:"")_"@:PUlS.?,24.?;LB“_$P(OUPSDATA,"“",J
w ,"PUO. ,23.5;LB"_$P{(OOPSDATA """, 4)_ "@;PU0.8,2Z.7;LB"_$P(00OPSDATA, """, 5)_", "_$8{¢D("DIC{S, +$P(00PSDATA """,
W tPUlz. 8,22 . 7;LB"_$P(00PSDATA, "~" 7)_"@;" ;ADDRESS
S 00PSP=+3$P{($G("~00PS(2Zc0 , IEN, "CAZA")) "~",2) ;DEPENDENTS
I OOPSP>0,00PSP<e W !, $S(00PSP=1:"PUlE. 2, 23.8;LBX@;" ,00PSP=2:"PULE. 2,23 4;LBX@E;" ,00PSP=3:"PUlLE. Z,ZC' LEBX@;" ,00PE
I 00PSP>5,DDPSP<3 W ! ,$S{00PEP=6:"PULlE. 2,23 4;LBX@;PULE.Z ,Z3;LBX@;" ,1:"PULE6. 2,23 8;LBX@,;PULE. 2, 23.4;LBXE;PULE. L
W tPU0. 2,20 9;LB"_$P{$G{"00PS {2260, IEN, "CAZA")) "~" 2} _"@;"
; Patch 8
S OCC=$$GET1"DIQ{ZZc0,IEN,15,"E")
S 0CC=$8{0CC<LZZ00:"G"_0CC, (0CC>Z495& (0CC<L2001)) - "W"_0CC, {0CC=53393):"2"_0CC, 1:""}
W "PUle.Z,zZ1.1;LB"_OCC_"@;" K OCC ; OCCUPATION CODE
M/SATEWAY

Friday, 29 November 13

VistA: Why it's like it is

* When first written, Mumps had many
constraints:
— 8 character variable name
— 8 character global names
— 8 character routine names
— 8 character labels
— No variable scoping
— No functions
— Everything upper case

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

VistA: Why it's like it is

* Hardware limitations at the time:
— Very expensive
— Very low-powered hardware
— Very little memory
— Developer time relatively less costly

» Code written to:
— minimise resource usage
— Maximise performance
— At the expense of maintainability

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Write code that doesn’t suck?

* Modern Mumps coding has none of the
original limitations

* Well-written modern Mumps code can be
highly readable, understandable and
maintainable

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

But:

 VistA coding standards: SAC Compliance
— Retains most of the coding limitations unnecessarily
 Original VistA Mumps code depended on leaky,
globally-scoped variables

— Very difficult to build new, properly-scoped code to
work with leaky legacy code

— Huge task to rewrite properly

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

The poisonous conflation

 Mumps is positioned as a language
* It's also a database

* Mention Mumps to the mainstream and
they focus on the language, not the
database

* Google search for Mumps language and
what do you find almost immediately?

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

The Poison

% @Q\ﬁ ‘ Sign On -+ Join + Forums
u T H E D A I L Y W T F’ Custom Search |Search|
’ Curious Perversions in Information Technology

Home » Articles » Feature Articles » A Case of the MUMPS

it was th -
IRVEERUER #Feed act Stop gueSSIng,

Get
we’ll show you = StartedNow

i the
With the

- = A Case of the MUMPS

Random Article

2007-02-13

by Afex Papadimoulis in Feature Aricles (357 Comments)

A—_"—'?:%';%i articles You may not realize it, but the majority of us developers have been living a sheltered professional
. Cl':”'j};S[':]D . life. Sure, we've got that living disaster of a C++ application and that ridiculous interface between
e Error'd PHP and COBOL written by the boss, but I can assure you, that all pales in comparison to what
e Tales fram the Interview many, less fortunate programmers have to work with each day. These programmers remain mostly
= Alex's Soaphox forgotten, toiling away at a dead-end career maintaining ancient information systems whose

ridiculously shoddy architecture is surpassed only by the tools used to create it. Bryan H lived in

Free WTF Swagq! such a world for over two years. Specifically, he worked at a "MUMPS shop.”

M/ GAT EWAY

NTE L _ <o P -l ENaT T =

Friday, 29 November 13

Back comes the poison

Andrew Clegg andrew _clego 27 Mat
| think this is why no-one uses it ow ly/jsvch ... RT @al3xandru:

Mumps: The Proto-Database nosgl.mypopescu.com/post/ded4079714

—

NTE L _ <o P -l ENaT T =

Friday, 29 November 13

The reason for the poison?

* Written by guys who have had to maintain
the leaky code in Mumps applications
such as Epic and VistA

* They believe (and perpetuate the belief)
that it's how you have to code in the
Mumps language

— nobody told them why that code was the way
it was, and that it didn’t need to be that way

— now all modern developers believe it too!

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Then we have the Misconceptions

Alan C. Viars aviars 19 Feb
-! @rtweed @jeffbrandt | get the comparison and understand it widely
W used in legacy systems, but | wouldn't start a new project on
UNIVAC
Expand <~ Reply 13 Retweet ¥ Favorite ee* More

Alan C. Viars “aviars 19 Feb
‘l. @rtweed @jeffbrandt MongoDB is not new and shinny at this point.

Very proven. Interfaces in all langs.
Expand

Alan C. Viars “aviars 19 Feb
‘l. @rtweed @jefforandt MUMPS problems: Lack of interfaces for most

langs. No support for XML/JSON. Built before TCP/IP. Small
community.
® View conversation

NTE L _ <o P -l ENaT T =

Friday, 29 November 13

More misconceptions

jeffbrandt ©effbrandt 18 Feb
RT @rtweed: @aviars Why not use cobol? it works but.... limiting

How many mumps programmer? How many schools teach
MUMPS, Madison

Expand

jeffbrandt @ effbrandt 18 Feb
RT @rtweed: @aviars |'d be interested to hear your reasoning

behind that conclusion 1960 technology, Silo data, no interfaces...
Expand

jeffbrandt ©effbrandt 18 Feb
RT @aviars: Mumps: <- Anyone building something new, MUMPS
over MongoDB needs head... | you can drive your car w/ your feet
but Why :)

Expand

jeffbrandt @ effbrandt 18 Feb
RT @aviars: RT @Mumps Univ NoSQL DB <- Anyone building

something new on MUMPS over MongoDB needs their head
examined. |Agree 100%
Expand

M/ GATEWAY

NTE L _ <o P -l ENaT T =

Friday, 29 November 13

Reason

* Epic
— | don’t know if criticisms of Epic’s interoperability are

founded or not, but if they are, it's a commercial
decision by Epic, not a technical limitation of Mumps

— However, this is naively being translated into a
poisonous “truth” that Mumps has significant technical
limitations

* Now being turned into a broader “truth™:

— Mumps’ dominance in the sector is the root of all ills in
Healthcare IT

* ie it's old, out-of-dated technology that is
fundamentally flawed and needs replacing

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

'] www.hitconsultant.net/2013/04/30/is-mumps-infecting-ehrs/

31
¥ Twee

ﬁ Share

11

A

™M,

] e

Is MUMPS Infecting EHRs?

CareCloud’s Ahmed Mori questions the effectiveness of the MUMPS EHR
programming language in healthcare.

The word ‘mumps’ has two meanings in the healthcare industry. Most
popularly, mumps is a virus characterized by a painful swelling of the
salivary glands, and is rather contagious.

Its other usage is an acronym for Massachusetts General Hospital Utility
Ainiti-BPranramminn Sveteam a nranramminn lanniians that ic almsact

Friday, 29 November 13

Step 1: remove the conflation

* Focus on Mumps, the database

— the Mumps language is pilloried by the
mainstream, for founded and unfounded
reasons

« attempting to change that opinion is futile
— By Mumps being considered a language, the

Mumps database is dismissed by the
mainstream

— It's the database that is the unique and
powerful part of the technology

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Mumps: Universal NoSQL

) www, mgateway.com/docs/universalos ol pdf

A Universal NoSQL Engine, Using a Tried and Tested Technology

Rob Tweed (roveed@mgateway.com web: http://www.mgateway.com))

George James (GeorgeJ@georgejames.com web: http://www.georgejames.com)

Introduction

You wouldn't expect a programming language from the 1960s to have anything new
to teach us, especially one that diverged from the mainstream around the time that
Dartmouth BASIC became popular. Even more especially a programming language
called MUMPS.

However, surprisingly there is one aspect of this archaic language that is still ahead of
it's time. MUMPS has a pearl in its oyster called Global Persistent Variables. These
are an abstraction of the B-tree structures that are normally used by MUMPS to store
large volumes of data. Global Persistent Variables (usually simply referred to as
"Globals") are an expressive and highly efficient way of modelling all of the common
use cases that are targeted these days by NoSQL databases.

M/ GAT EWAY

NTE L _ <o P -l ENaT T =

Friday, 29 November 13

Step 2: Replace the language

* Alanguage that has similar good parts to
Mumps

* Object oriented, but dynamic objects
* High performance and scalability

* Highly popular language that is likely to
stay that way

« Similar intimate integration with the
Mumps database

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

JavaScript: ticks all the boxes

* Alanguage that has similar good parts to
Mumps

* Object oriented, but dynamic objects
* High performance and scalability
* Highly popular language
— Games, 3-d, social media industries
— It's not going to disappear
— It's the language new developers are learning

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

JavaScript runs in the browser, right?

* Yes, but now also on the server:
— Node.js

. 25

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Node.|s

« Server-side implementation of Javascript
« Started as an open-source project by Ryan Dhal
« Uses Google’s V8 Javascript engine

* Designed for network programming

— Event-driven
— Normally asynchronous 1/O

* Very high performance and scalability
* Runs on Linux, Windows & Mac OS X
« Recently officially approved for use by the VA

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Node.|s

 Many open-source modules, in particular:
— built-in Web server
— Socket.io: web-sockets

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

InterSystems Node.js Interface

* |nitially introduced for their free Globals
database

— Used their very low-level interface into the core global
database engine

— Written by Chris Munt (M/Gateway Developments)
— Very high performance

* Ported to Cache (2012.2)

— Official standard interface

— function() API added to invoke Mumps functions from
Javascript

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Equivalent for GT.M?

* David Wicksell: NodeM
— https://github.com/dlwicksell/nodem

— APIl-compatible reverse-engineer of
InterSystems’ Node.js interface

» Behaves identically

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Node.js Interface

Node.js \

D0RLBIU| Ulj|e] ++)

o

N EL <O -1 ENT T =

GT.M
Caché
Globals.DB

-
=

adeLIBlu| uljen 9

GT.M: NodeM - mumps.node
Caché/GlobalsDB: cache.node

* Caché & GT.M Only

Friday, 29 November 13

Mumps, the JSON Database

* Important to present a Mumps database
as something natural to a JavaScript

developer
« JSON is their lingua-franca

* Abstract Mumps Global storage into
persistent JavaScript Objects

— similar level of “intimacy” as between the
Mumps language and database

31

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Dynamic OO Global Abstraction

* Underlying concept: any object and its
properties can be easily modelled as a
corresponding Mumps Global node, eg:

— patient.address.town

— patient.address.zip

— patient.name

— Mpatient(id,”address”,"town”)="New York”
— Mpatient(id,"address”,"zip")=123456

— Mpatient(id,”"name”)="John Smith”

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Document Storage

* Physical Globa

Nodes projected as

GlobalNode objects in JavaScript

* GlobalNode objects have two key methods:

— _setDocument()
« Maps a JSON document into an equivalent global as

a sub-tree

— _getDocument()
 Maps a GlobalNode’s sub-tree into a JSON object

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

JavaScript Document Storage

var gridData = |
{col1: 1, col2: 1, name: ‘rec1’},
{col1: 4, col2: 4, name: ‘recd’}

I;

session.$('newGridData'). _setDocument(gridData);

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

JavaScript Document Storage

var gridData = |
{col1: 1, col2: 1, name: ‘rec1’},
{col1: 4, col2: 4, name: ‘recd’}

I;

session.$('newGridData'). _setDocument(gridData);

N%zewdSession("session",4020,"newGridData",0,"col1")=1
"Y%zewdSession("session",4020,"newGridData",0,"col2")=1
NbzewdSession("session",4020,"newGridData",0,"name")="rec1"
N%zewdSession("session",4020,"newGridData",1,"col1")=4
NbpzewdSession("session",4020,"newGridData",1,"col2")=4
(

NbpzewdSession("session",4020,"newGridData",1,"name")="rec4"

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

JavaScript Document Storage

"Y%zewdSession("session",4020,"newGridData",0,"col1")=1
"% zewdSession("session",4020,"newGridData",0,"col2")=1

(
N%zewdSession("session",4020,"newGridData",0,"name")="rec1"
NozewdSession("session”,4020,"newGridData”, 1,"col1")=4
NbzewdSession("session",4020,"newGridData",1,"col2")=4
(

"%zewdSession("session",4020,"newGridData",1,"name")="rec4"

var gridData = session.newGridData._getDocument(gridData);

[

{col1: 1, col2: 1, name: ‘rec1’},
{col1: 4, col2: 4, name: ‘recd’}

I;

—

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

The key ingredients

 Mumps as one of the most powerful and
proven NoSQL databases available:

— high scalability, high performance
* Projected as a JSON database

» Accessible via JavaScript

— using Node.js to provide server-side
environment

— using native interface for Cache
— or equivalent interface for GT.M

e 37

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

One more key piece of magic

« WebSockets
— HTML5 standard

— bi-directional, event-driven socket connection
* between browser & back-end

— JSON messaging between browser and back-
end

— generally being found to be faster than HTTP/
Ajax
— No polling!

e 38

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Package it all up

« EWD.js
— framework for JavaScript applications
—100% JavaScript & JSON

— WebSockets to deliver JSSON between
browser and Node.js back-end

— Mumps databases abstracted to appear to be
JSON stores

— fully event-driven
— client/server in the browser

e 39

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

EWD.js Architecture

Child Process Pool
“Node.js Child Process

e Y

Node.js Master Process

Ny

Incoming
WebSocket

/

Requests Web Server Node.js Child Process
& WebSockets
D Interface
Static . -
content “Node.js Child Process

requests

Fully
Asynchronous

M/ GAT EWAY

N EL <O -1 ENT T =

Friday, 29 November 13

EWD.js Architecture

Child Process Pool

e O\

Node.js Master Process
\x

Incoming
WebSocket
Requests Web Server
): & WebSockets
Interface

Static
content
requests

Asynchronous

Note: WebSockets connect browsers
to Node.js Master Process, not to
Caché or GT.M

41

M/ GAT EWAY

NTE L _ <o P -l ENaT T =

Friday, 29 November 13

EWD.js Development

Browser EWD.js Developer
AN Child Process Pool
N\
. /// 1 OOOA) ‘\R"‘i':,-:, Child Process
Ul: HTML & JavaScript JavaSCI’i pt 2 "
Application |
module: Synchronous

in-process

JavaScript

Node.js Chikd Process
Application
™

Node.js Child Process

e i

App Logic: JavaScript '

Node.js Master
Process

42

GATEWAY

D!\,EI_OPM BT =

Friday, 29 November 13

EWD.js Messaging

Browser

Child Process Pool

Event Node.js Child Process
Ul: HTML & JavaScript O ccurs

‘ .
Application
module:
JavaScript

Synchronous
in-process

App Logic: JavaScript

Node.js Child Process
Application
L - o .
Node.|js Master
Node.js Child Process

Process

Application

an S

Interface

[

|
»
e I 43

M/ GAT EWAY

NTE L _ <o P -l ENaT T =

Friday, 29 November 13

EWD.js Messaging

Browser

Ul: HTML & JavaScrip*

App Logic: JavaScript

JSON
Message
Created

Node.|js Master
Process

Interface

an S

Child Process Pool

Node IS Child Process

‘ .

Application
module:

JavaScript

Synchronous
in-process

Node.js Child Process
Application
4 ™)
Node.js Child Process

Application

-y

_
I)

M/ GAT EWAY

NTE L _ <o P -l ENaT T =

44

Friday, 29 November 13

EWD.js Messaging

Browser

Child Process Pool

Node.js Child Process

Ul: HTML & JavaScript

"
Application
module: Synchronous
App Logic: JavaScript Messa ge Pl Mo

Sent

Node.js Child Process

Node.js Master
Process

Web Server

R \AahQaAanl
(Px u'q(é_.’t.t‘)‘._.‘(.k(_.’t'\j

Interface

45

M/ GATEWAY

NTE L _ <o P -l ENaT T =

Friday, 29 November 13

EWD.js Messaging

Browser

Ul: HTML & JavaScript

App Logic: JavaScript

M/ GAT EWAY

NTE L _ <o P -l ENaT T =

Node.js Master
Process

R WahSQnarlk
& WebSockets

Message Child Process Pool
Recelved Node.js Child Process

at
back-end Application
module: Synchronous

JavaScript in-process
Node.js Child Process .

8.

Application

imocuh

Node.js Child Process
- .h

46

Friday, 29 November 13

EWD.js Messaging

Browser

Message Child Process Pool
Ul: HTML & JavaScript Handler Node.js Child Process
: avaScrip _
fired

<«

Application
Synchronous

App Logic: JavaScript

Node.js Child Process

Application

q ™
P Node.|js Master

Node.js Child Process
Process s
Apphcabon h

Web Server
D A O Al
& WebSockets

Interface

47

M/ GAT EWAY

NTE L _ <o P -l ENaT T =

Friday, 29 November 13

EWD.js Messaging

setDocument()
Browser -

Child Process Pool

Node.js Child Process
UI: HTML & JavaScript J

Application
module: Synchronbus
JavaScript in-process

App Logic: JavaScript

Node.js Child Process

Apphcabon

Web Server

Node.js Master
& WebSocket

Node.js Child Process
Process X
Appucanon i
Interface

w..-*_h-
v

48

M/ GAT EWAY

NTE L _ <o P -l ENaT T =

Friday, 29 November 13

EWD.js Messaging

Browser _getDocument()

Child Process Po

Node.js Child Process
UI: HTML & JavaScript |

Application
module:
JavaScript

App Logic: JavaScript

Node.js Child Process
Apphcahon

Node.|js Master

Node.js Child Process
Process X

Apohcabon

Web Server
: bkl
& WebSockets

Interface

49

M/ GAT EWAY

NTE L _ <o P -l ENaT T =

Friday, 29 November 13

EWD.js Messaging

Browser

Message Child Process Pool

Sent Node.js Child Process
Ul: HTML & JavaScript
by

back-end Application

module: Synchronous
JavaScript In-process

Node.js Child Process
Application
q
Node.js Child Process
- .h

2.

App Logic: JavaScript

—— Node.js Mag

50

M/ GATEWAY

NTE L _ <o P -l ENaT T =

Friday, 29 November 13

EWD.js Messaging

Browser

Child Process Pool

Message Node.js Child Process
Received

by
browser

Ul: HTML & JavaScript

2.

Application
module:

Synchronous

App Logic: JavaScript In-process

Node.js Master
Process

Web Server
& WebSockets

Interface

51

M/ GATEWAY

NTE L _ <o P -l ENaT T =

Friday, 29 November 13

EWD.js Messaging

Browser

Child Process Pool
Event

Handler
Fires

€ ‘H P

Ul: HTML & JavaScript
App Logic: JavaScripl*

R Node.|s Master
Process

(-

Application
module: Synchronous
Javascript in-proceSS

Node.js Child Process
Application
- - |

Node.js Child Process

JSON
Message

Application

R ey T

- I 52

M/ GATEWAY

NTE L _ <o P -l ENaT T =

Friday, 29 November 13

EWD.js Messaging

Browser

Child Process Pool

Modify

Ul: HTML & JavaScript , |

Node IS Child Process

‘ .

Application
module:

JavaScript

Synchronous
in-process

App Logic: JavaScript

Node.js Child Process
Ambon y
Node.|js Master < H—
Process Node.js Child Process
Application

i ey T

Interface

[

a
»
- I 53

M/ GAT EWAY

NTE L _ <o P -l ENaT T =

Friday, 29 November 13

Send message from browser

EWD.sockets.sendMessage({
type: "sendHelloWorld",
params: {
text: 'Hello World!',
sender: 'Rob’,
date: new Date().toUTCString()

—_— 54

NTE L _ <O P ENT T =

Friday, 29 November 13

Send message from browser

EWD.sockets.sendMessage({
type: "sendHelloWorld",
params: {
text: 'Hello World!',
sender: 'Rob’,
date: new Date().toUTCString()

NTE L _ <O P ENT T =

Friday, 29 November 13

Send message from browser

EWD.sockets.sendMessage({
type: "sendHelloWorld",
params: {
text: 'Hello World!',
sender: 'Rob/,
date: new Date().toUTCString()

});
_JSON payload

NTE L _ <o P -l ENaT T =

Friday, 29 November 13

56

Back-end Module

module.exports = {
onSocketMessage: function(ewd) {
var wsMsg = ewd.webSocketMessage;
var type = wsMsqg.type,;
var params = wsMsg.params;
var sessid = ewd.session.$(‘ewd_sessid'). value;

= Y

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Back-end Module

module.exports = {
onSocketMessage: function(ewd) {
var wsMsg = ewd.webSocketMessage;
var type = wsMsqg.type;
var params = wsMsg.params;
var sessid = ewd.session.$(‘ewd_sessid'). value;

Message Handler: fires whenever
a message Is received

= 58

NTE L _ <O P ENT T =

Friday, 29 November 13

Back-end Module

module.exports = {
onSocketMessage: function(ewd) {
var wsMsg = ewd.webSocketMessage;
var type = wsMsg.type;
var payload = wsMsg.params;
var sessid = ewd.session.$('ewd_sessid'). value;
if (type === "'sendHelloWorld") {
// do whatever is required with payload
return {received: true};

1 Handle the message we
sent from browser

— 59

NTE L _ <O P ENT T =

Friday, 29 November 13

Back-end Module

module.exports = {
onSocketMessage: function(ewd) {

var wsMsg = ewd.webSocketMessage;

var type = wsMsg.type;

if (type === "'sendHelloWorld') {
var savedMsg = new ewd.mumps.GlobalNode('myMessage’, []);
savedMsg. setDocument(wsMsg);
return {savedinto: “*myMessage'};

Saves the entire message
— — Into *myMessage 60

NTE L _ <O P ENT T =

Friday, 29 November 13

Back-end Module

module.exports = {
onSocketMessage: function(ewd) {

var wsMsg = ewd.webSocketMessage;

var type = wsMsg.type;

if (type === "sendHelloWorld') {
var savedMsg = new ewd.mumps.GlobalNode('myMessage’, []);
savedMsg. setDocument(wsMsg);
return {savedInto: “*myMessage'};

Returns a sendHelloWorld
message back to browser

= 61

NTE L _ <O P ENT T =

Friday, 29 November 13

Browser-side Handler

EWD.onSocketMessage = function(messageObj) {
if (messageObj.type === 'sendHelloWorld') {

var text = "Your message was successfully saved into ' +
messageObj.message.savedinto;

document.getElementByld(‘response').innerHTML = text;

setTimeout(function() {
document.getElementByld('response').innerHTML = ";

},2000);

Built-in Event Handler function

—_— 62

NTE L _ <O P ENT T =

Friday, 29 November 13

Browser-side Handler

EWD.onSocketMessage = function(messageObj) {
if (messageObj.type === 'sendHelloWorld") {

var text = "Your message was successfully saved into ' +
messageObj.message.savedinto;

document.getElementByld(‘response').innerHTML = text;

setTimeout(function() {
document.getElementByld('response').innerHTML = ";

},2000);

Just like at the back-end!

e 63

NTE L _ <O P ENT T =

Friday, 29 November 13

Browser-side Handler

EWD.onSocketMessage = function(messageObj) {
if (messageObj.type === 'sendHelloWorld') {

var text = "Your message was successfully saved into ' +
messageObj.message.savedinto;

document.getElementByld(‘response’).innerHTML = text;

setTimeout(function() {
document.getElementByld('response').innerHTML = ";

1,2000);

Modify the Ul

£ 64

NTE L _ <o P -l ENaT T =

Friday, 29 November 13

No Polling!

* With WebSockets, the back-end can send
a message at any time to:

— a specific browser

— all browsers running a specific EWD.|s
application

— all currently-connected browsers

= 65

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Back-end sending a message

var savedMsg = new ewd.mumps.GlobalNode('myMessage’, []);

ewd.sendWebSocketMsg({
type: 'savedMessage’,
message: savedMsg. getDocument()

1;

—_— 66

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Invoking Mumps code

 Can invoke functions from within the back-
end JavaScript module:

var result = ewd.mumps.function('getPatientVitals"MyEHR',
params.patientid,
params.date);

e 67

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Invoking Mumps code

 Can invoke functions from within the back-
end JavaScript module:

var result = ewd.mumps.function('getPatientVitals"MyEHR',
params.patientid,
params.date);

This is the equivalent of the Mumps code:

set result=%$3getPatientVitals*MyEHR(patientld,date)

e 68

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Invoking Mumps code

 Can invoke functions from within the back-
end JavaScript module:

var result = ewd.mumps.function('getPatientVitals"MyEHR',
params.patientid,
params.date);

This is the equivalent of the Mumps code:

set result=%$3getPatientVitals*MyEHR(patientld,date)

Then use _getDocument() to retrieve Vitals from Global to
corresponding JSON

69

NTE L _ <O P ENT T =

Friday, 29 November 13

Built-in secured Web Services

* Any back-end JavaScript method can be
exposed as a JSON Web Service

* Access is automatically secured

— HMAC-SHAZ256 digital signatures required for
every HT TP request

— The same security used by Amazon Web
Services

* Lightweight peer-to-peer access between
EWD.js systems

—_— 70

NTE L _ <O P ENT T =

Friday, 29 November 13

Example Web Service

webServiceExample: function(ewd) {
var patient = new ewd.mumps.GlobalNode('CLPPats', [ewd.query.id));
if (!patient._exists) return {error: 'Patient ' + ewd.query.id + ' does not exist'};
return patient._getDocument();

}

https://192.168.1.89:8080/json/demo/webServiceExample?
id=1233&
accessld=rob12kjh1i23&
timestamp=Wed, 19 Jun 2013 14:14:35 GMT&
signature=P0blakNehj2TkuadxbKRsIgJCGIhY1EvntJdSce5XvQ=

Node.js EWD.js Web Service client:
npm install ewdliteclient

= 71

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Example Web Service

webServiceExample: function(ewd) {
var patient = new ewd.mumps.GlobalNode('CLPPats', [ewd.query.id));
if (!patient._exists) return {error: 'Patient ' + ewd.query.id + ' does not exist'};
return patient._getDocument();

}

https://192.168.1.89:8080/json/demo/webServiceExample?
id=1233&
accessld=rob12kjh1i23&
timestamp=Wed, 19 Jun 2013 14:14:35 GMT&
signature=P0blakNehj2TkuadxbKRsIgJCGIhY1EvntJdSce5XvQ=

The perfect architecture to
Node.js EWD.js Web Service client: P VSA
npm install ewdliteclient support

= 72

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Secured Linked Systems

Chikd Process Pool
Node js Master Process R f-—sin® "’
.;'- .I l N ' .

]

/7

Shared Secret Key
Just like Amazon Web Services

73

Friday, 29 November 13

Node.|js Custom Events

addMedication({params})

= 74

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Node.|js Custom Events

addMedication({params})

addMedication = function(params) {
... code for adding medication

ewd.emit(‘audit’, {auditParams};
ewd.emit(‘stockControl’, {stockParams});

X

s 75

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Node.|js Custom Events

addMedication({params}) ewd.on(‘audit’, function(params) {
.... code for adding audit record

possibly via WebService to remote

addMedication = function(params) {) system

... code for adding medication

ewd.emit(‘audit’, {auditParams};
ewd.emit(‘stockControl’, {stockParams});

X

s 76

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Node.|js Custom Events

addMedication({params}) ewd.on(‘audit’, function(params) {
.... code for adding audit record

%

addMedication = function(params) {
... code for adding medication

ewd.emit(‘audit’, {auditParams};
ewd.emit(‘stockControl’, {stockParams});

X

ewd.on(‘stockControl’, function(params {
.... code for changing stock record

X

= 7

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

EWD.js v “classic” EWD

* 100% JavaScript

— no direct use of Mumps code

— no Mumps routines to install and configure

— works with InterSystems’ GlobalsDB

Static pages of HTML and JavaScript

— not an “server pages” technology

— no compilation stage

Not a tag-based development environment

Works with any and all JavaScript frameworks,
or hand-crafted HTML

* No HTTP / Ajax

S ——

78

NTE L _ <O P ENT T =

Friday, 29 November 13

EWD.js requirements

* |deally browsers that support HTMLS
WebSockets
— however, EWD.js uses Node.|s socket.io
library

« emulates websockets using other techniques if not
available

« even works with old versions of Internet Explorer!

s 79

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Licensing & Availability

* Apache 2
* https://github.com/robtweed/ewdGateway?2

* Installing on Node.js:
— npm Install ewdgateway?2

— 80

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

Getting Started

 http://gradvs1.mgateway.com/download/EWDjs.pdf
« dEWDrop VM (http://www.fourthwatchsoftware.com)
« Mike Clayton’s Ubuntu Installer

— Node.js

— EWD.js

— GlobalsDB
* Raspberry PI!

* Training Course:
— WorldVistA meeting, Sacramento: Jan 2014
— UK?

= 81

S ——

NTE L _ <O P ENT T =

Friday, 29 November 13

http://gradvs1.mgateway.com/download/EWDjs.pdf
http://gradvs1.mgateway.com/download/EWDjs.pdf
http://www.fourthwatchsoftware.com
http://www.fourthwatchsoftware.com

—

S ——

NTE L _ <O P ENT T =

EWD.js

Rob Tweed
M/Gateway Developments Ltd

Twitter: @rtweed
Email: rtweed@mgateway.com

Friday, 29 November 13

mailto:rtweed@mgateway.com
mailto:rtweed@mgateway.com

