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EWD.js

• Background, History and Aims
• Underlying Technology & Architecture

– Comparison with “classic” EWD
– Benefits

• How do you use it?
– Examples
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The backdrop

• How to make Mumps acceptable to the 
“mainstream”?

• How to recruit and retain new developers 
with the expertise to:
– exploit the new and expanding possibilities of 

browsers as the modern, ubiquitous UI platform
– make VistA the healthcare Big Data visualisation 

platform of choice
– make Healthcare IT as exciting and cool as the 

gaming and social media industries?
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http://robtweed.wordpress.com
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Mumps: a Dead End?
• Not seen as a sensible career move by most of 

the new generation of developers
– Unlikely to want a Mumps development job
– Unlikely to be retained very long

• Dwindling pool of Mumps skills, despite training 
efforts

• Significant brake on VistA uptake:
– Seen as a risk by potential adopters:

• Old, obsolete technology
• Shortage of developers
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Understanding the bigger picture

• Google Alerts
• Twitter searches & dialogue
• Feedback on articles and comments
• Feedback from other communities

• Understanding the issues from the point of 
view of those looking at Mumps from the 
mainstream
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For example
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For example
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VistA: Why it’s like it is

• When first written, Mumps had many 
constraints:
– 8 character variable name
– 8 character global names
– 8 character routine names
– 8 character labels
– No variable scoping
– No functions
– Everything upper case
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VistA: Why it’s like it is

• Hardware limitations at the time:
– Very expensive
– Very low-powered hardware
– Very little memory
– Developer time relatively less costly

• Code written to:
–  minimise resource usage
– Maximise performance
– At the expense of maintainability
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Write code that doesn’t suck?

• Modern Mumps coding has none of the 
original limitations

• Well-written modern Mumps code can be 
highly readable, understandable and 
maintainable
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But:
• VistA coding standards: SAC Compliance

– Retains most of the coding limitations unnecessarily
• Original VistA Mumps code depended on leaky, 

globally-scoped variables
– Very difficult to build new, properly-scoped code to 

work with leaky legacy code
– Huge task to rewrite properly

Friday, 29 November 13



The poisonous conflation

• Mumps is positioned as a language
• It’s also a database
• Mention Mumps to the mainstream and 

they focus on the language, not the 
database

• Google search for Mumps language and 
what do you find almost immediately?
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The Poison
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Back comes the poison
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The reason for the poison?

• Written by guys who have had to maintain 
the leaky code in Mumps applications 
such as Epic and VistA

• They believe (and perpetuate the belief) 
that it’s how you have to code in the 
Mumps language
– nobody told them why that code was the way 

it was, and that it didn’t need to be that way
– now all modern developers believe it too!
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Then we have the Misconceptions
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More misconceptions
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Reason
• Epic

– I don’t know if criticisms of Epic’s interoperability are 
founded or not, but if they are, it’s a commercial 
decision by Epic, not a technical limitation of Mumps

– However, this is naively being translated into a 
poisonous “truth” that Mumps has significant technical 
limitations

• Now being turned into a broader “truth”:
– Mumps’ dominance in the sector is the root of all ills in 

Healthcare IT
• ie it’s old, out-of-dated technology that is 

fundamentally flawed and needs replacing
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Step 1: remove the conflation

• Focus on Mumps, the database
– the Mumps language is pilloried by the 

mainstream, for founded and unfounded 
reasons 

• attempting to change that opinion is futile
– By Mumps being considered a language, the 

Mumps database is dismissed by the 
mainstream

– It’s the database that is the unique and 
powerful part of the technology
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Mumps: Universal NoSQL
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Step 2: Replace the language

• A language that has similar good parts to 
Mumps

• Object oriented, but dynamic objects
• High performance and scalability
• Highly popular language that is likely to 

stay that way
• Similar intimate integration with the 

Mumps database
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JavaScript: ticks all the boxes

• A language that has similar good parts to 
Mumps

• Object oriented, but dynamic objects
• High performance and scalability
• Highly popular language

– Games, 3-d, social media industries
– It’s not going to disappear
– It’s the language new developers are learning
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JavaScript runs in the browser, right?

• Yes, but now also on the server:
– Node.js
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Node.js
• Server-side implementation of Javascript
• Started as an open-source project by Ryan Dhal
• Uses Google’s V8 Javascript engine
• Designed for network programming

– Event-driven
– Normally asynchronous I/O

• Very high performance and scalability
• Runs on Linux, Windows & Mac OS X
• Recently officially approved for use by the VA
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Node.js

• Many open-source modules, in particular:
– built-in Web server
– Socket.io: web-sockets
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InterSystems Node.js Interface
• Initially introduced for their free Globals 

database
– Used their very low-level interface into the core global 

database engine
– Written by Chris Munt (M/Gateway Developments)
– Very high performance

• Ported to Caché (2012.2)
– Official standard interface
– function() API added to invoke Mumps functions from 

Javascript
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Equivalent for GT.M?

• David Wicksell: NodeM
– https://github.com/dlwicksell/nodem

– API-compatible reverse-engineer of 
InterSystems’ Node.js interface

• Behaves identically
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Node.js Interface
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Mumps, the JSON Database

• Important to present a Mumps database 
as something natural to a JavaScript 
developer

• JSON is their lingua-franca
• Abstract Mumps Global storage into 

persistent JavaScript Objects
– similar level of “intimacy” as between the 

Mumps language and database
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Dynamic OO Global Abstraction

• Underlying concept: any object and its 
properties can be easily modelled as a 
corresponding Mumps Global node, eg:

– patient.address.town
– patient.address.zip
– patient.name

– ^patient(id,”address”,”town”)=“New York”
– ^patient(id,”address”,”zip”)=123456
– ^patient(id,”name”)=“John Smith”
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Document Storage

• Physical Global Nodes projected as 
GlobalNode objects in JavaScript

• GlobalNode objects have two key methods:
–  _setDocument()

• Maps a JSON document into an equivalent global as 
a sub-tree

–  _getDocument()
• Maps a GlobalNode’s sub-tree into a JSON object
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 var gridData = [
    {col1: 1, col2: 1, name: ‘rec1’},
    {col1: 4, col2: 4, name: ‘rec4’}
  ];
  session.$('newGridData')._setDocument(gridData);

JavaScript Document Storage
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JavaScript Document Storage

^%zewdSession("session",4020,"newGridData",0,"col1")=1
^%zewdSession("session",4020,"newGridData",0,"col2")=1
^%zewdSession("session",4020,"newGridData",0,"name")="rec1"
^%zewdSession("session",4020,"newGridData",1,"col1")=4
^%zewdSession("session",4020,"newGridData",1,"col2")=4
^%zewdSession("session",4020,"newGridData",1,"name")="rec4"

 var gridData = [
    {col1: 1, col2: 1, name: ‘rec1’},
    {col1: 4, col2: 4, name: ‘rec4’}
  ];
  session.$('newGridData')._setDocument(gridData);
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JavaScript Document Storage
^%zewdSession("session",4020,"newGridData",0,"col1")=1
^%zewdSession("session",4020,"newGridData",0,"col2")=1
^%zewdSession("session",4020,"newGridData",0,"name")="rec1"
^%zewdSession("session",4020,"newGridData",1,"col1")=4
^%zewdSession("session",4020,"newGridData",1,"col2")=4
^%zewdSession("session",4020,"newGridData",1,"name")="rec4"

var gridData = session.newGridData._getDocument(gridData);
 
[
    {col1: 1, col2: 1, name: ‘rec1’},
    {col1: 4, col2: 4, name: ‘rec4’}
  ];
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The key ingredients

• Mumps as one of the most powerful and 
proven NoSQL databases available:
– high scalability, high performance

• Projected as a JSON database
• Accessible via JavaScript

– using Node.js to provide server-side 
environment

– using native interface for Cache
– or equivalent interface for GT.M
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One more key piece of magic

• WebSockets
– HTML5 standard
– bi-directional, event-driven socket connection

• between browser & back-end
– JSON messaging between browser and back-

end
– generally being found to be faster than HTTP/

Ajax
– No polling!
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Package it all up

• EWD.js
– framework for JavaScript applications
– 100% JavaScript & JSON
– WebSockets to deliver JSON between 

browser and Node.js back-end
– Mumps databases abstracted to appear to be 

JSON stores
– fully event-driven
– client/server in the browser

39
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EWD.js Architecture
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EWD.js Architecture
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Note: WebSockets connect browsers
to Node.js Master Process, not to
Caché or GT.M
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EWD.js Development
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100%
JavaScript
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EWD.js Messaging
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Event
Occurs

Friday, 29 November 13



EWD.js Messaging
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JSON
Message
Created
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EWD.js Messaging
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Message
Sent
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EWD.js Messaging
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Message
Received

at
back-end
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EWD.js Messaging
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Message
Handler

fired
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EWD.js Messaging
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_setDocument()
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EWD.js Messaging
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_getDocument()
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EWD.js Messaging
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Message
sent
by

back-end
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EWD.js Messaging
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Message
Received

by
browser
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EWD.js Messaging
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JSON
Message

Event
Handler

Fires
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EWD.js Messaging
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Modify
UI
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Send message from browser

54

 EWD.sockets.sendMessage({
   type: "sendHelloWorld",
   params: {
     text: 'Hello World!',
     sender: 'Rob',
     date: new Date().toUTCString()
   } 
 });
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Send message from browser

55

 EWD.sockets.sendMessage({
   type: "sendHelloWorld",
   params: {
     text: 'Hello World!',
     sender: 'Rob',
     date: new Date().toUTCString()
   } 
 });

User-defined type
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Send message from browser

56

 EWD.sockets.sendMessage({
   type: "sendHelloWorld",
   params: {
     text: 'Hello World!',
     sender: 'Rob',
     date: new Date().toUTCString()
   } 
 });

JSON payload
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Back-end Module

57

module.exports = {
  onSocketMessage: function(ewd) {
    var wsMsg = ewd.webSocketMessage;
    var type = wsMsg.type;
    var params = wsMsg.params;
    var sessid = ewd.session.$('ewd_sessid')._value;
  }
};

Friday, 29 November 13



Back-end Module

58

module.exports = {
  onSocketMessage: function(ewd) {
    var wsMsg = ewd.webSocketMessage;
    var type = wsMsg.type;
    var params = wsMsg.params;
    var sessid = ewd.session.$('ewd_sessid')._value;
  }
};

Message Handler: fires whenever
a message is received
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Back-end Module

59

module.exports = {
  onSocketMessage: function(ewd) {
    var wsMsg = ewd.webSocketMessage;
    var type = wsMsg.type;
    var payload = wsMsg.params;
    var sessid = ewd.session.$('ewd_sessid')._value;
    if (type === 'sendHelloWorld') {
      // do whatever is required with payload
      return {received: true};
    }
  }
}; Handle the message we 

sent from browser
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Back-end Module

60

module.exports = {
  onSocketMessage: function(ewd) {
    var wsMsg = ewd.webSocketMessage;
    var type = wsMsg.type;
    if (type === 'sendHelloWorld') {
      var savedMsg = new ewd.mumps.GlobalNode('myMessage', []);
      savedMsg._setDocument(wsMsg);
      return {savedInto: ‘^myMessage'};
    }
  }
};

Saves the entire message
into ^myMessage
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Back-end Module

61

module.exports = {
  onSocketMessage: function(ewd) {
    var wsMsg = ewd.webSocketMessage;
    var type = wsMsg.type;
    if (type === 'sendHelloWorld') {
      var savedMsg = new ewd.mumps.GlobalNode('myMessage', []);
      savedMsg._setDocument(wsMsg);
      return {savedInto: ‘^myMessage'};
    }
  }
};

Returns a sendHelloWorld
message back to browser
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Browser-side Handler

62

 EWD.onSocketMessage = function(messageObj) {
   if (messageObj.type === 'sendHelloWorld') {
     var text = 'Your message was successfully saved into ' + 
        messageObj.message.savedInto;
     document.getElementById('response').innerHTML = text;
     setTimeout(function() {
       document.getElementById('response').innerHTML = '';
     },2000);
   }
 };

Built-in Event Handler function
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Browser-side Handler

63

 EWD.onSocketMessage = function(messageObj) {
   if (messageObj.type === 'sendHelloWorld') {
     var text = 'Your message was successfully saved into ' + 
        messageObj.message.savedInto;
     document.getElementById('response').innerHTML = text;
     setTimeout(function() {
       document.getElementById('response').innerHTML = '';
     },2000);
   }
 };

Just like at the back-end!
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Browser-side Handler

64

 EWD.onSocketMessage = function(messageObj) {
   if (messageObj.type === 'sendHelloWorld') {
     var text = 'Your message was successfully saved into ' + 
        messageObj.message.savedInto;
     document.getElementById('response').innerHTML = text;
     setTimeout(function() {
       document.getElementById('response').innerHTML = '';
     },2000);
   }
 };

Modify the UI
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No Polling!

• With WebSockets, the back-end can send 
a message at any time to:
– a specific browser
– all browsers running a specific EWD.js 

application
– all currently-connected browsers
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Back-end sending a message

66

 var savedMsg = new ewd.mumps.GlobalNode('myMessage', []);
 
 ewd.sendWebSocketMsg({
   type: 'savedMessage',
   message: savedMsg._getDocument()
 });
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Invoking Mumps code

• Can invoke functions from within the back-
end JavaScript module:

67

var result = ewd.mumps.function('getPatientVitals^MyEHR', 
                                                      params.patientId, 
                                                      params.date);
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Invoking Mumps code

• Can invoke functions from within the back-
end JavaScript module:

68

var result = ewd.mumps.function('getPatientVitals^MyEHR', 
                                                      params.patientId, 
                                                      params.date);
 
This is the equivalent of the Mumps code:

 set result=$$getPatientVitals^MyEHR(patientId,date)
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Invoking Mumps code

• Can invoke functions from within the back-
end JavaScript module:

69

var result = ewd.mumps.function('getPatientVitals^MyEHR', 
                                                      params.patientId, 
                                                      params.date);
 
This is the equivalent of the Mumps code:

 set result=$$getPatientVitals^MyEHR(patientId,date)

Then use _getDocument() to retrieve Vitals from Global to 
corresponding JSON
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Built-in secured Web Services

• Any back-end JavaScript method can be 
exposed as a JSON Web Service

• Access is automatically secured
– HMAC-SHA256 digital signatures required for 

every HTTP request
– The same security used by Amazon Web 

Services
• Lightweight peer-to-peer access between 

EWD.js systems
70
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Example Web Service

71

 webServiceExample: function(ewd) {
   var patient = new ewd.mumps.GlobalNode('CLPPats', [ewd.query.id]);
   if (!patient._exists) return {error: 'Patient ' + ewd.query.id + ' does not exist'};
   return patient._getDocument();
 }

https://192.168.1.89:8080/json/demo/webServiceExample?
   id=1233&
   accessId=rob12kjh1i23&
   timestamp=Wed, 19 Jun 2013 14:14:35 GMT&
   signature=P0bIakNehj2TkuadxbKRsIgJCGIhY1EvntJdSce5XvQ=

Node.js EWD.js Web Service client:
npm install ewdliteclient
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Example Web Service

72

 webServiceExample: function(ewd) {
   var patient = new ewd.mumps.GlobalNode('CLPPats', [ewd.query.id]);
   if (!patient._exists) return {error: 'Patient ' + ewd.query.id + ' does not exist'};
   return patient._getDocument();
 }

https://192.168.1.89:8080/json/demo/webServiceExample?
   id=1233&
   accessId=rob12kjh1i23&
   timestamp=Wed, 19 Jun 2013 14:14:35 GMT&
   signature=P0bIakNehj2TkuadxbKRsIgJCGIhY1EvntJdSce5XvQ=

Node.js EWD.js Web Service client:
npm install ewdliteclient

The perfect architecture to
support VSA
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Secured Linked Systems
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Node.js Custom Events

74

addMedication({params})
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Node.js Custom Events

75

addMedication({params})

addMedication = function(params) {
... code for adding medication

ewd.emit(‘audit’, {auditParams};
ewd.emit(‘stockControl’, {stockParams});
};
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Node.js Custom Events

76

addMedication({params})

addMedication = function(params) {
... code for adding medication

ewd.emit(‘audit’, {auditParams};
ewd.emit(‘stockControl’, {stockParams});
};

ewd.on(‘audit’, function(params) {
  .... code for adding audit record

   possibly via WebService to remote
   system
};
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Node.js Custom Events

77

addMedication({params})

addMedication = function(params) {
... code for adding medication

ewd.emit(‘audit’, {auditParams};
ewd.emit(‘stockControl’, {stockParams});
};

ewd.on(‘audit’, function(params) {
  .... code for adding audit record
};

ewd.on(‘stockControl’, function(params {
  .... code for changing stock record
};
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EWD.js v “classic” EWD
• 100% JavaScript

– no direct use of Mumps code
– no Mumps routines to install and configure
– works with InterSystems’ GlobalsDB

• Static pages of HTML and JavaScript
– not an “server pages” technology
– no compilation stage

• Not a tag-based development environment
• Works with any and all JavaScript frameworks, 

or hand-crafted HTML
• No HTTP / Ajax

78
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EWD.js requirements

• Ideally browsers that support HTML5 
WebSockets
– however, EWD.js uses Node.js socket.io 

library
• emulates websockets using other techniques if not 

available
• even works with old versions of Internet Explorer!

79
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Licensing & Availability

• Apache 2

• https://github.com/robtweed/ewdGateway2

• Installing on Node.js:
– npm install ewdgateway2
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Getting Started
• http://gradvs1.mgateway.com/download/EWDjs.pdf
• dEWDrop VM (http://www.fourthwatchsoftware.com)
• Mike Clayton’s Ubuntu Installer

– Node.js
– EWD.js
– GlobalsDB

• Raspberry Pi!
• Training Course: 

– WorldVistA meeting, Sacramento: Jan 2014
– UK?
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